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Abstract 
In this paper we consider the filtration problem across a membrane composed of an aggregate of parallel 

circular cylinders wherein each cylinder is covered by a concentric porous shell and subject to a radial magnetic 

field. The cell model is applied so that system is taken as equivalent to a single cylinder encased in the porous shell 

and enclosed by a concentric cylindrical enveloping surface under axial flow of a conducting fluid subject to a radial 

magnetic field. Our aim is to evaluate the effect of magnetic field on permeability parameter. Bvp4c tool is used to 

solve the system of equations. The results are then graphically presented and discussed. The analysis reveals that 

permeability decreases with Hartmann number M for all values of gap and that increasing the gap increases the 

permeability for all values of M. 

 

Keyword:  Hydro Magnetic. 

Introductions  
Cell model was advanced by Happel [1] 

and Kuwabara [2] to obtain in a simple manner 

the analytical results for the complex problem of 

flow past a concentrated assemblage of particles. 

The method is dealt with in the above papers and 

also in the book Low Reynolds Number 

Hydrodynamics by Happel and Brenner [3]. The 

cell method is concerned with the study of slow 

flow past a swarm of concentrated particles. The 

essence of the method consists of replacing the 

swarm by a single particle enclosed in an 

envelope and the interaction effect of the 

multitude of particles being accounted by suitable 

boundary condition at the enveloping surface. The 

use of this method in our context follows from 

observing that filtration membrane is composed of 

an aggregate of tiny particles through a fluid 

percolates slowly. 

Vasin and Flippov [4] used cell model to evaluate 

the hydrodynamic permeability for a system of 

sold spherical particles covered with a porous 

shell. In another paper  [5] they investigated the 

flows in a concentrated media composed of rigid 

impermeable cylinders covered with a porous 

layer; both transverse and longitudinal flows were 

taken up. Amongst similar works, we may 

mention the contributions of Kirsh [6], [7]. 

Here we aim to study the controlling factor of 

electromagnetic Lorentz force when the flid is 

electrically conducting and flows through a 

membrane composed of array of parallel circular 

non conducting cylinders with each cylinder 

covered by a porous cylindrical layer and subject 

to radial magnetic field. The flow in the clear 

fluid is governed by Stokes equation and in the 

porous medium by Brinkman equation [8] the 

flow is taken along the axes of the cylinders; the 

cross flow problems have also been investigated 

and will be presented in a separate paper. 

In a companion paper, Part I of this study of cell 

model for hydromagnetic axial flow over a 

cylinder, we have studied the case of uniform 

transverse magnetic field. But here we introduce 

an additional parameter in the form of porosity of 

the porous shell covering each of the constituent 

impermeable cylinder. 

                                                        

                                                                         

 

Basic equations 
The basic hydromagnetic field quantites are velocity u´, pressure p´, magnetic field B´, electric field E´ 

and current density vector J´. Let us consider uniform steady axial flow 𝑈0 along a cylindrical body (composed 

of a solid core covered by a concentric porous shell) of radius a and subject to radial magnetic field of strength 

B0/r’. It will be convenient to non-dimensionalize the quantities as follows 
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      𝑟′ = 𝑎𝑟, 𝑧′ = 𝑎𝑧, 𝑢′ = 𝑈𝒖, 𝑝′ =
𝜇𝑈0

𝑎
𝑝,                                                                        (1) 

               𝑩′ = 𝐵0𝑩, 𝑬′ = 𝑈𝟎𝐵0𝑬, 𝑱′ = 𝜎𝜇𝑚     

 It will be convenient to non – dimensional form as follows 

Stokes Equation 

                           0 =  −∇𝑝 + ∇2u + M2J x B                                                                                 (2) 

                                      ∇. 𝒖 = 0                                                                                                        (3) 

Here, 𝑀2 =  𝜎𝑎2𝐵0
2 𝜇⁄  is the square of Hartmann number 

Brinkman Equation 

                            0 =  −∇𝑝 + m∇2𝐮 − s2𝐮 + M𝟐𝐉 𝐱 𝐁                                                             (4) 

                            ∇. 𝒖 = 0                                                                                                                 (5) 

Here m = 𝜇𝑒 𝜇⁄  is the ratio of effective viscosity to viscosity and 𝑠2 =  
𝑎2 𝑘

𝜇
 is porosity parameter, k being the 

porosity coefficient in dimensional Brinkman equation: 

 

Maxwell equations: 

 

                             ∇x𝐄 = 0, ∇. 𝐄 =  ρe                                                                   (6) 

 

ρ e   represents the total charge density. 

  

                              ∇x𝐁 = Rm𝐉, ∇. 𝑩 = 𝟎                                                                (7) 

 

Here Rm = μm𝝈Ua  is magnetic Reynolds. Ohm’s law  

   

                                        J = E + u x B                                                                                              (8) 

 

Continuity equation for the current density vector is  

 

                                     ∇. 𝐉 = 𝟎                                                                            (9) 

 

 

Reseler and Sears [9] pointed out that the term u x B in Ohm’s can be taken to represent a tiny generator or source 

of e.m.f at any point in the moving fluid. The vector E represents the total electric field arising out of internal causes 

such as separation of charges or polarization and external causes such as charged boundaries of the flow. Thus the 

electric field cannot be dissociated from the fluid motion; and its value within the fluid element is directly affected 

by the motion of the element and is taken to be of the order u x B. Hence, we conclude that for E to vanish, we must 

have 

 

                                                                 ∇. (u x B) = 0                                                                  (10) 

 

Framing of the problem     
The cell method simplifies the problem to consideration of uniform steady flow in the axial direction, taken 

along the z- axis enveloped in a cell and subject to a radial magnetic field  

[ See Figs.  (1),(2)]. Thus in the non-dimensional variables the inner cylinder is of unit radius, the enveloping 

cylinder of radius c = 1/d, the external flow ez and applied magnetic field er/r. It may be seen that except of  

pressure all quantities are independent of z and functions of r alone. Further, we assume that magnetic Reynolds 

number Rm  is small and  find that only z- component of the magnetic field is induced.   Also, we take m = 1 but 

the analysis may be extended to other positive values of m. Thus, the problem reduces to the determination of the 

differential equations and boundary conditions for the velocity u(r)ez and induced magnetic field b(r)ez. 

Thus, we take 

                       u = u(r)ez                                                                                                                                                     (11) 

 

                     𝐵 =   
𝑒𝑟

𝑟
+  𝑏(𝑟)𝑒𝑧                                                                                                  (12) 
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Fig. 1 

 

 

                                                          
 

Fig.2 

 

We find that   

                     𝒖𝑥𝑩 =  
𝒖𝒆ө

𝒓
                                                                                                                     (13) 

So that                 
                   ∆. 𝒖𝒙𝑩 = 0                                                                                                                      (14) 

Hence, we can take E = 0. We may check that all the hydro magnetic equations are satisfied with u and b given by 

(11) and (12). Now onwards, we shall designate velocity in the Stokes region II (1 < r < c) by U and in the Brinkman 

region I(1 - ö < r < 1) by V. 

 

                                            MHD equations for the problem 

For the problem in hand we find that the component Stokes and Brinkman equations are expressible as below. 

Stokes equation in region II 

                                                        0 =  −
𝜕𝑝

𝜕𝑟
+

𝑀2 𝑈𝑏

𝑟
                                                                    (15) 

                                                       0 =  −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢

𝑑𝑟
) −

𝑀2𝑈

𝑟2                                                (16) 

                                                        
𝜕𝑏

𝜕𝑟
=  −

𝑅𝑚𝑈

𝑟
                                                                              (17) 

The third of the above equations shows that  
𝜕𝑝

𝜕𝑧  
  is constant and this leads to the determination of velocity U. 

Equation (17) provides the induced magnetic and then the one the pressure as a function of r and z. 

Brinkman Equations in region I 

                                                    0 =  −
𝜕𝑝

𝜕𝑟
+

𝑀2 𝑉𝑏

𝑟
                                                        (18) 

                                          0 =  −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑉

𝑑𝑟
) − 𝑠2𝑉 −

𝑀2𝑉

𝑟2                               (19) 

                                                    
𝜕𝑏

𝜕𝑟
=  −

𝑅𝑚𝑉

𝑟
                                                                 (20) 

 It may be noted that in the region I, we continue to write the same symbols for pressure p and induced magnetic 

field b; this is because pressure gradient 
𝜕𝑝

𝜕𝑧
= P is constant and we are not here evaluating p as we are interested in 

finding the velocity field and for that equations (16) and (19) together with the boundary conditions are sufficient. 

ez 

    er/r 

r = c 

r = 1 

r = 1-𝜹 
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Boundary conditions 
At the solid surface r = 1 - 𝛿     

No Slip : 

                                       V = 0                                                                                                              (21)  

At the interface r = 1: 

Continuity of the velocity          

                                  U(1) = V(1)                                                                                                         (22)                                                                              

Continuity of the stress 

                                 
𝑑𝑉

𝑑𝑟
 = 

𝑑𝑈

𝑑𝑟
                                                                                                               (23) 

Happel, Kuwabara, Kvashnin, Morse-Mehta/Cunningham conditions, all reduce to 

                                 
𝒅𝒖

𝒅𝒓
 = 𝟎                                                                                                              (24) 

    

Plots and discussion 
The solutions of the two differential equations (16) and (19) of the second order are solved using bvp4c 

tool in Matlab. In this method equation (16) and equation (19) are converted into first order differential equations 

and multiboundary condition method has been used to solve the system of equations. The suitable initial guess 

has been used to solve the set of equations. 

The graphs have been plotted for variation of permeability with shell thickness, with Hartmann number 

and with d. The effect of magnetic field on velocity profile have been plotted in the graph. 

The variation of permeability L with porous shell thickness has been shown graphically in Fig.3. The effect has 

been studied in the absence of magnetic filed and in the presence of magnetic field. The permeability increases in 

the absence of magnetic field with the increasing porous shell thickness smoothly. But with M = 1.0 the behavior 

changes, the permeability increases with porous shell thickness but very slowly.  

 

 

          
























L

Fig.3: Variation of permeability L with the Porous shell thickness 
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The variation of permeability L with the Hartmann number M has been plotted in Fig. 4 with different 

outer boundary. The permeability increases smoothly with Hartmann number as well as with the increase of 

outer boundary. But as the outer boundary increases the effect of magnetic field becomes less significant. The 

graph has been plotted for different values of c. for c = 2.0, the variation of permeability is very small and does 

not change significantly with the variation of magnetic parameter M.  

For c = 3.0 the values of permeability parameter increases sharply and changes significantly with the variation of 

Hartmann number M. The same behavior is observable for c = 4.0. The effect of variation in the value of c shows 

that the importance of cell boundary of the considered model.  

 

 

 
Fig.5 shows variation of Permeability L with the gap parameter d for different values of Hartmann number. With 

the increase of gap parameter permeability increases sharply in the absence of magnetic field. But with M = 1.0 

permeability increases very slowly with gap parameter. As M increases to 2.0 the effect of gap parameter on 

permeability is almost negligible. 

The effect of Magnetic parameter has been viewed simultaneously with the variation of permeability. 
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Fig.4: Variation of permeability L with Hartmann number.   

 

 

c = 4.0

c = 3.0

c = 2.0

http://www.ijesrt.com/


[Saxena, 3(6): June, 2014]   ISSN: 2277-9655 

  Scientific Journal Impact Factor: 3.449 

  (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 

[615-622] 

 

The effect of magnetic field on the velocity has been shown in Fig. 6. The velocity decreases with the increase of 

magnetic field and the velocity becomes constant at a fixed distance for a magnetic field.The variation in the 

graph can be visualized as we increase the magnetic field from 1.0 to 2.0 the effect on velocity is significant in 

comparison to the absence of magnetic field. As distance from origin increases the velocity increases smoothly. 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20
Fig.5: Variation of Permeability L with d
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